

DATA SHEET

ANTI-SULFURATED CHIP RESISTORS

AF series

5%, 1% sizes 0402/0603/0805/1206

RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes AF0402 to AF1206 chip resistors with anti-sulfuration capabilities.

APPLICATIONS

- Environments exposed to high levels of contamination, such as industrial control systems
- Car electronics, sensors, electric instrumentation and communication base stations

FEATURES

- Superior resistance against sulfur containing atmosphere
- Halogen free product and production
- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduces environmentally hazardous waste
- High component and equipment reliability
- Saving of PCB space

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AF \underline{XXXX} \underline{X} \underline{X} \underline{X} \underline{XX} \underline{XXXX} \underline{L}

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0402 / 0603 / 0805 / 1206

(2) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

-= Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel	10 = 10 inch dia. Reel
13 = 13 inch dia. Reel	7D = 7 inch Dia. Reel with double quantity

(6) RESISTANCE VALUE

I Ω to 22 M Ω

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules are displayed in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for ordering only (Note)

Resistance rule of global part number

Resistance coding ru	ule Example
XRXX (1 to 9.76 Ω)	IR = I Ω $IR5 = I.5 Ω$ $9R76 = 9.76 Ω$
XXRX (10 to 97.6 Ω)	10R = 10 Ω 97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 KΩ)	1K = 1,000 Ω $9K76 = 9760 Ω$
$\times M \times \times$ (I to 9.76 M Ω)	IM = 1,000,000 Ω 9M76= 9,760,000 Ω

ORDERING EXAMPLE

The ordering code for an AF0402 chip resistor, value $100~\text{K}\Omega$ with $\pm1\%$ tolerance, supplied in 7-inch tape reel with 10Kpcs quantity is: AF0402FR-07100KL.

NOTE

- I. All our RSMD products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
- On customized label, "LFP" or specific symbol can be printed

Chip Resistor Surface Mount | AF | SERIES | 0402 to 1206

AF0402

No marking

-Fig. I

AF0603 / AF0805 / AF1206

E-24 series: 3 digits, $\pm 5\%$, $\geq 10 \Omega$

First two digits for significant figure and 3rd digit for number of zeros

AF0603

E-24 series: 3 digits, ±1%

One short bar under marking letter

E-96 series: 3 digits, ±1%

First two digits for E-96 marking rule and 3rd letter for number of zeros

AF0805 / AF1206

Both E-24 and E-96 series: 4 digits, ±1%

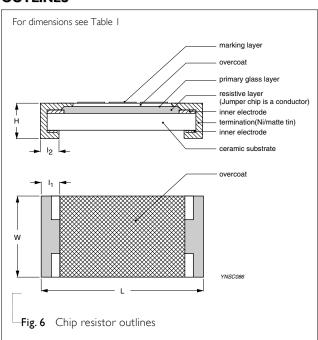
First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please see special data sheet "Chip resistors marking". Marking of AF series is the same as RC series

4 8

CONSTRUCTION


The resistors are constructed on top of a high grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added. See fig.6

DIMENSIONS

-Table I For outlines see fig. 6

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
AF0402	1.00 ±0.05	0.50 ±0.05	0.32 ±0.05	0.20 ±0.10	0.25 ±0.10
AF0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
AF0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
AF1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20

OUTLINES

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS				
TYPE RESISTANCE RANGE		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
AF0402			50 V	100 V	100 V	
AF0603	$\pm 5\%$ (E24), I Ω to 22 M Ω		50 V	100 V	100 V	I $\Omega \le R \le 10 \Omega$, $\pm 200 \text{ ppm/°C}$
A F000F	\pm 1% (E24/E96), I Ω to I0 M Ω	–55 °C to +155 °C				10Ω < R \leq $10 M\Omega$, $\pm 100 ppm/°C$
AF0805	Zero Ohm Jumper < 0.05 Ω		150 V	300 V	300 V	$10 \text{ M}\Omega < R \le 22 \text{ M}\Omega, \pm 200 \text{ ppm/°C}$
AF1206	7 1		200 V	400 V	500 V	, 11

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles of AF-series is the same as RC-series. Please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AF0402	AF0603	AF0805	AF1206
Paper taping reel (R)	7" (178 mm)	10,000/20,000	5,000	5,000	5,000
	10" (254 mm)	20,000	10,000	10,000	10,000
	13" (330 mm)	50,000	20,000	20,000	20,000

NOTE

1. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

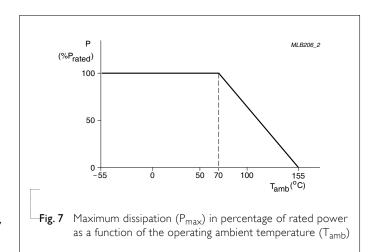
Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: AF0402=1/16 W (0.0625W) AF0603=1/10 W (0.1W) AF0805=1/8 W (0.125W) AF1206=1/4 W (0.25W)

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of Resistance (T.C.R.)	IEC 60115-1 4.8	At +25/–55 °C and +25/+125 °C Formula: T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$ Where t_1 =+25 °C or specified room temperature t_2 =-55 °C or +125 °C test temperature R_1 =resistance at reference temperature in ohms R_2 =resistance at test temperature in ohms	Refer to table 2
Life/Endurance	IEC 60115-1 4.25 MIL-STD-202 Method 108	At 70±2 °C for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still air required	$\pm (1.0\% + 0.05~\Omega)$ <100 m Ω for Jumper
High Temperature Exposure/ Endurance at Upper Category Temperature	MIL-STD-202 Method 108	I,000 hours at 155±5 °C, unpowered	\pm (1.0%+0.05 Ω) for 1% tol. \pm (1.0%+0.05 Ω) for 5% tol. <100 m Ω for Jumper
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts	$\pm (0.5\% + 0.05~\Omega)$ for 1% tol. $\pm (1.0\% + 0.05~\Omega)$ for 5% tol. <100 m Ω for Jumper
Thermal Shock	MIL-STD-202 Method 107	-55 / +125 °C Number of cycles required is 300. Devices unmounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes	$\pm (0.5\% + 0.05~\Omega)$ for 1% tol. $\pm (1\% + 0.05~\Omega)$ for 5% tol. <100 m Ω for Jumper
Short Time Overload	IEC60115-1 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 seconds at room temperature	±(1.0%+0.05 Ω) No visible damage
Bending	IEC 60115-1 4.33 IEC 60068-2-21	Chips mounted on a 90 mm glass epoxy resin PCB (FR4) Bending: 0402: 5 mm 0603/0805: 3 mm 1206: 2 mm Bending time: 60±5 seconds	±(1.0%+0.05 Ω) <100 mΩ for Jumper No visible damage

Chip Resistor Surface Mount AF SERIES 0402 to 1206

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Biased Humidity	IEC 60115-1 4.37	1,000 hours at 85 °C / 85% R.H.	±(3.0%+0.05 Ω)
(steady state)	MIL-STD-202 Method 103	10% operating power	
		Measurement at 24±2 hours after test conclusion	
Solderability			
- Resistance to	IEC 60115-1 4.18	Condition B, no pre-heat of samples	$\pm (0.5\% {+} 0.05~\Omega)$ for 1% tol.
Soldering Heat	MIL-STD-202 Method 215	Lead-free solder, 260 \pm 5 °C, 10 \pm 1 seconds immersion time	$\pm (1.0\% + 0.05~\Omega)$ for 5% tol. <50 m Ω for Jumper
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	No visible damage
- Wetting	J-STD-002	Electrical test not required	Well tinned (≥95% covered)
		Magnification IOX	No visible damage
		SMD conditions:	
		(a) Method B, aging 4 hours at 155 °C dry heat, lead-free solder bath at 245 °C	
		(b) Method B, dipping at 215 °C for 3 seconds	
ESD	AEC-Q200-002	Human body model,	±(3.0%+0.05 Ω)
		l pos. + I neg. discharges:	
		0402/0603: I KV 0805/1206: 2 KV	
Terminal Strength	IEC 60115-1 4.32 IEC 60068-2-21	A force of 5N applied for 10±1 seconds	±(1.0%+0.05 Ω)
FOS	ASTM-B-809-95	Sulfur (saturated vapor) 1,000 hours, 60±2 °C, 91-93% R.H., unpowered	±(1.0%+0.05 Ω)

8

8

Chip Resistor Surface Mount AF SERIES 0402 to 1206

REVISION HISTORY

REVISION DATE CHANGE NOTIFICATION DESCRIPTION

Version 0 Jan 07, 2011 - First issue of this specification

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."